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The Kelvin probe measures surface electrical potential without making physical contact with the specimen.
It relies on capacitive coupling between an oscillating metal tip that is normal to a specimen’s surface. Kelvin
probes have been increasingly used to study surface and electrical properties of metals and semiconductors and
are capable of detecting material surface potentials with submillivolt resolution at a micrometer spatial scale.
Its capability for measuring electrical potential without being confounded by electrode-specimen contact makes
extending its use towards biological materials particularly appealing. However, the theoretical basis for applying
the Kelvin probe to dielectric or partially conductive materials such as biological tissue has not been evaluated
and remains unclear. This study develops the theoretical basis underlying Kelvin probe measurements in five
theoretical materials: highly conductive, conductive dielectric with rapid charge relaxation, conductive dielectric
with slow charge relaxation, perfect dielectric, and tissue with a bulk serial resistance. These theoretically
derived equations are then computationally analyzed using parameters from both theoretical specimens and
actual biomaterials—including wet skin, dry skin, cerebrospinal fluid, and tendon. Based on these analyses, a
Kelvin probe performs in two distinct ways depending on the charge relaxation rates of the sample: The specimen
is treated either as a perfect dielectric or as highly conductive material. Because of their rapid relaxation rate
and increased permittivity biomaterials behave similarly to highly conductive materials, such as metal, when
evaluated by the Kelvin probe. These results indicate that the Kelvin probe can be readily applied to studying the
surface potential of biological tissue.

DOI: 10.1103/PhysRevE.85.061901 PACS number(s): 87.15.A−, 87.15.Pc, 87.19.R−, 87.50.C−

I. INTRODUCTION

A Kelvin probe measures a specimen’s surface electrical
potential without making physical contact and utilizes a
vibrating metallic tip placed over a specimen of interest.
These two components are connected to form a circuit, as
detailed in the next section. The metallic tip and specimen
form the two contralateral components of a capacitor and, with
a given electrical potential difference, their proximity induces
the accumulation of opposing charges on their respective
surfaces. The oscillating probe tip alters the capacitance and
thus, by extension, the surface charges on both the tip and the
specimen. This process generates an oscillating current which
is captured and converted to a voltage by the Kelvin probe
measurement system to ultimately determine the potential
difference between the tip and the specimen [1].

Although the Kelvin probe was first postulated by Sir
William Thomson (Lord Kelvin) as early as the 1860s,
advances in metallic tip fabrication, motor controllers, mi-
crochips, and software engineering have led to its increasing
utilization across a broad range of disciplines—including
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alphabetic order.

corrosion science [2,3], liquid-air interfaces [4,5], surface
adsorption [6], polymer science and engineering [7], and
semiconductor studies [8–12], among others. At present, the
Kelvin probe is capable of detecting material surface potentials
with submillivolt resolution at a micrometer spatial scale.
Moreover, the development of an “off-null” detection method
(to be discussed later) has greatly enhanced the signal-to-noise
ratio and permits the independent reporting of the tip-to-
specimen spacing to within 1 μm [13–15].

Because the Kelvin probe measures surface potential
without actually touching the specimen, it has substantial
advantages over existing potentiometer devices and can con-
ceivably be used to evaluate biological specimens in the in
vivo setting. It is not limited by variable ion accumulation at
the electrode, the effects of contact medium, or the influence
of mechanical pressure on the specimen, and thus bypasses
the electrode-tissue confounders that plague most, if not
all, conventional electrical measurement devices. In addition,
the Kelvin probe does not utilize intercalating dyes, strong
electrical currents, or ionizing beams that may interfere or
possibly harm active physiologic processes. For these reasons,
several studies have investigated the use of the Kelvin probe
in biological events—specifically, corn shoot growth [1] and
human skin wound [16]—and have identified measurable
and possibly physiologically meaningful surface potentials.
Nevertheless, the theoretical basis for applying the Kelvin
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FIG. 1. Circuit diagram for a Kelvin probe testing a specimen
where V0 is equal to the constant intrinsic potential difference between
the tip and specimen, Vs , plus an applied dc backing potential, Vb.
VCk is the oscillatory component stemming from the vibrating tip.

probe to biological specimens has not been evaluated and still
remains unclear.

Kelvin probes have traditionally been applied to highly
conductive materials such as metals because the results are
interpretable: The charge carrier is well defined (i.e., electron)
and the Kelvin probe-derived surface potential measurements
impart information about the substance’s work function (i.e.,
the minimum energy required to liberate an electron from
the surface). In biological tissue, however, the charge carriers
are typically ionic; the fixed molecular constituents have
insulating and often polar properties; and the charge relaxation
process is not as instantaneous as it is in metal. In order
to understand the factors contributing to the Kelvin probe
measurements in biological specimens, this study develops
the theoretical basis underlying Kelvin probe measurements
in five theoretical materials: highly conductive, conductive
dielectric with rapid charge relaxation, conductive dielectric
with slow charge relaxation, perfect dielectric, and tissue with
a bulk serial resistance. These theoretically derived equations
are then computationally analyzed using parameters from both
theoretical specimens and actual biomaterials.

II. THE ANALYTICAL MODEL

To fully derive the theoretical equations, two aspects of
our analyses must be defined: first, the Kelvin probe electrical

circuit and second, the electrical constitutive and conservative
relationships within the theoretical specimen.

A basic circuit diagram of a Kelvin probe is provided in
Fig. 1 and is based on prior publications [14] and an available
device on the market (SKP 5050, KP Technology Ltd., Wick,
UK) but can be generalized to other similar devices. The
variable capacitance arising from the oscillating probe tip
over a stationary specimen is represented by Ck . The constant
intrinsic potential difference between the probe tip and the
specimen is symbolized by Vs. This potential difference may
be supplemented by an applied dc voltage referred to as Vb,
or the backing potential. Shown in Fig. 1, V0 represents Vs

plus the backing potential, Vb: V0 = Vs + Vb. VCk represents
the oscillatory component of the voltage stemming from the
vibrating tip. The oscillating capacitance at a given voltage
difference, V0, generates an oscillating current, Itot, which is
distributed to the system’s input resistance, Rin, and parasitic
capacitance, Cp. The voltage at the input to the system’s
current-to-voltage (I -V ) converter is noted as Vr .

The backing potential Vb can be manipulated by the user
and is traditionally varied until the current flowing through
the circuit—and thus Vr—is zero. Because this occurs when
Vb = −Vs this approach is often used to derive the intrinsic
potential difference between the probe tip and the specimen.
However, the presence of external electrical fields and circuit
noise at the zero current level present significant barriers for
the exact determination of this value, and for this reason, an
off-null approach is often used. This will be further described
in a subsequent section (Sec. III B1).

The constitutive and conservative relationships within the
theoretical and biomaterial specimens will follow the model
illustrated in Fig. 2. The mean distance between the probe
tip and specimen is given as d0 and the amplitude of the tip
oscillation given by da . In highly conductive substances such
as metal, the electrical field is effectively neutralized at the
very superficial layers (approximately a few angstroms) due
to the mobile charges within the specimen. This results in a
single capacitor between the Kelvin probe tip and specimen,
and, as depicted in Fig. 2(a), eliminates any contributing field
effects from the material bulk below the surface. The potential
drop across this capacitor is represented by Vc. This model
will be used for the highly conductive material case.

FIG. 2. In both figures the region is indicated by the subscript number. (a) Diagram showing the electrical field, E, from the Kelvin probe
being neutralized at a very superficial layer within the specimen. (b) Diagram showing the electrical field, E, from the Kelvin probe penetrating
the specimen prior to being neutralized.
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FIG. 3. Circuit diagram for a Kelvin probe testing a specimen
which has a bulk resistance, Rb.

Most biomaterials, on the contrary, are neither pure conduc-
tors nor perfect dielectrics. By definition, dielectric materials
allow electrical fields to penetrate and thereby lend to the con-
tributions of bulk conductivity and permittivity to the overall
charge aggregation on the probe tip. Figure 2(b) illustrates
this process and demarcates the properties associated with
each region. In the perfect dielectric case, the conductivity
in Region 2, σ2, is zero and is conceptually represented by
two capacitors in series: one across air and a second across
the dielectric specimen. In the conductive dielectric cases,
both ε2, the permittivity in Region 2, and σ2 have nonzero
values and are associated with charge relaxation rates that are
either much slower or much faster than the tip oscillation rates.
These divergent cases will be treated separately. In Fig. 2(b),
Vc represents the potential drop across both capacitors while
the depth of the specimen capacitor is represented by d2. This
depth can vary greatly depending on the material properties of
the specimen.

The final theoretical case, resistive bulk, involves a resistive
component within the bulk tissue and specifically evaluates the
effects of the bulk-traversing electrical currents on the Kelvin
probe potential measurements. As shown in Fig. 3, a resistor
is added in series with the tip-to-specimen capacitor.

For each of these theoretical cases, the governing equations
and mathematical derivation of Vr (during tip oscillations) are
detailed separately in the following section. In situations where
the solutions were too complex for manual derivations, a sym-
bolic computation program, MAPLE v.15 (Maplesoft, Waterloo,
Ontario, Canada), was used. This software was also employed
to numerically compute the anticipated Vr measurements for
our representative theoretical and biomaterial specimens.

III. MATERIAL FORMULATIONS

A. Tip electric field

To derive the result for Vr for each theoretical case we must
understand the electrical field, E1, at the tip of the Kelvin
probe. To establish this solution, the conductive current within
the specimen must be elaborated and used to determine E1,
the electrical field between tip and specimen as a function of
the Region 1 and 2 properties as depicted in Fig. 2(b). The
boundary condition at the interface between Regions 1 and
2 associated with the law of charge conservation yields the
following formula:

n̂ • ( J2 − J1) + ∇� • K = −∂σs

∂t
, (3.1)

where J is the current density in the indicated region. The
surface charge density is given by σs . The presence of a surface
current at the interface is accounted for by K . The ∇� • K term
denotes the divergence of K in the plane of the surface [17].
Surface currents can arise from a parallel (to the surface)
component of the electrical field and can be represented by a
stray capacitive effect. The stray capacitive effect on the Kelvin
probe measurement will not be directly considered here as it
has been evaluated previously [14]. In the analysis performed
here we assume the placement of the reference electrode is
such that the electrical field perpendicular to the specimen
greatly exceeds the tangential component of the electrical
field. This implies that the surface current term in Eq. (3.1)
is negligible, so it can be simplified to

n̂ • ( J2 − J1) = −∂σs

∂t
. (3.2)

However, if the sample area under the tip is closely proximate
to the reference electrode and if the surface conductivity
between the two areas is large, this simplification cannot
be made because the surface current density would not be
negligible. The interfacial (boundary) condition associated
with Gauss’ law states that

σs = n̂ • (ε2 E2 − ε1 E1), (3.3)

where E is the electrical field in the indicated region. The
permittivity for a given region is indicated by ε. The current
density in each region is given by

J2 = σ2 E2, (3.4)

J1 = σ1 E1, (3.5)

where the conductivity in an indicated region is given by σ .
Region 1 is typically air and has a nonzero capacitive current
component but an Ohmic (conduction) component equal
to zero. Given this constraint we combine Eqs. (3.2)–(3.5)
resulting in

n̂ • σ2 E2 = −∂ [n̂ • (ε2 E2 − ε1 E1)]

∂t
. (3.6)

Since fringing fields are assumed negligible, from here
forward, the electrical field variables, E1 and E2, will represent
the normal components of the electrical fields and will thus be
given as scalars. The contact potential, Vc, is given by

d1 (t) E1 (t) + d2E2 = Vc, (3.7)

where d1 (t) = d0 + dasin(ωt). The tip oscillation angular
frequency is given by ω. Combining the two latter equations
[Eqs. (3.6) and (3.7)] and solving for E1(t) reveals that

E1 (t) = Vc

d1 (t)
+ Vc

[
ε2

ε2d1 (t) + ε1d2
− 1

d1 (t)

]
e−t/τ . (3.8)

The equation for τ is given by

τ = (ε1d2 + ε2d0)

(σ2d0)
. (3.9)

The first term for E1(t) is the steady state solution while
the second term is the transient one. The time constant, τ , is
determined by the conductivity of Region 2, along with the
permittivity and depth of both regions. It represents the charge
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relaxation time for the system after the external electrical field
is altered. The equation for E1 allows for determination of Vr

for a variety of biomaterials with different charge relaxation
characteristics. In the following sections we consider such
solutions for the theoretical cases of interest.

B. Basic circuit material formulations

The basic circuit shown in Fig. 1 serves as the basis for the
derivation of the highly conductive, conductive dielectric with
rapid relaxation, conductive dielectric with slow relaxation,
and perfect dielectric cases presented in this section.

The current generated by the Kelvin probe tip oscillation is
distributed across the circuit:

dq

dt
= Itot = ICp + IRin = Cp

dVr

dt
+ Vr

Rin
, (3.10)

where ICp is the current through Cp and IRin is the current
through Rin as shown in Fig. 1.

From Kirchoff’s second law, the following voltage relation-
ship holds:

VCk + V0 + Vr = 0, (3.11)

which can subsequently be rearranged to yield the charge at
the probe tip:

q = −Ck (V0 + Vr ) . (3.12)

Taking the derivative of this equation and setting it equal to
Eq. (3.10) yields

dVr

dt
+

[
1

Rin(Cp + Ck)
+ 1

(Cp + Ck)

dCk

dt

]
Vr

= − 1

(Cp + Ck)

dCk

dt
V0. (3.13)

Taking Cp � Ck and 1/Rin � dCk/dt this equation sim-
plifies to

dVr

dt
+ 1

RinCp

Vr = − 1

Cp

dCk

dt
V0. (3.14)

This differential equation can be used to obtain the Vr (t)
solution for a particular material that follows the circuit
arrangement depicted in Fig. 1.

1. Highly conductive material

As stated previously, Kelvin probes have been extensively
used for highly conductive materials such as metals. Here,
we revisit the theoretical solution for Vr in such materials as
previously described by Baikie et al. [14].

The relative importance of the transient term in Eq. (3.8)
depends on the time scale by which the electrical fields are
being modified. With respect to the Kelvin probe, the time vari-
ation in electrical field magnitudes arises from the oscillating
specimen-to-tip distance: Assuming a fixed tip-to-specimen
potential difference, the electrical field amplitude increases
as the tip-to-specimen distance decreases and conversely
decreases as the distance increases. For a voice-coil actuator
Kelvin probe the oscillation period is typically between 10 and
30 ms. If the tip oscillating period, t1, is substantially longer
than the charge relaxation time (τ � t1)—as it is for a highly
conductive material with very rapid charge relaxation—then

the transient exponent exp(−t1/τ ) rapidly approaches zero
during each period of the sinusoid. This leaves the following
equation for E1:

E1 (t) = Vc (t)

d1 (t)
. (3.15)

The capacitance, Ck , is given by

Ck = q

Vc

= σsA

Vc

= ε1E1A

Vc

. (3.16)

The area of the capacitor plates, A, can be taken as (π )(r2),
where r is the radius of the Kelvin probe tip. Plugging E1(t)
for this case into Ck simplifies it to the familiar form

Ck = ε1A

d1 (t)
. (3.17)

Solving the differential equation for Vr (t) given in
Eq. (3.14), while using the Ck provided above and making
the assumption that d0 � da , it is observed that

Vr (t) = − ωb

a2 + ω2
e−at + b√

a2 + ω2
sin (ωt + θ ) , (3.18)

where

a = 1

RinCp

, b = V0ωε1daA

Cpd2
0

, θ = tan−1
(
−ω

a

)
.

The first term in Eq. (3.18) is the transient while the second
term represents the steady state solution. The steady state
solution can be written as

Vss (t) = KM

d2
0

(Vb + Vs) sin (ωt + θ ) , (3.19)

where

KM = ωε1daA

Cp

√
1

R2
inC

2
p

+ ω2
.

The peak-to-peak voltage is

Vptp = 2KM

d2
0

(Vb + Vs) . (3.20)

The Kelvin probe primarily utilizes this peak-to-peak value
to calculate Vs , the surface potential difference between the
tip and the specimen. As shown in Fig. 4, by varying Vb and
simultaneously recording Vptp, a linear Vptp versus Vb plot is
produced. The x intercept occurs when Vb is equal to –Vs .
A change in Vs will cause the line to shift either to the right
or to the left. On the other hand, a change in d0—the mean
distance between the tip and specimen—will change the slope
of the line without affecting its x-axis intercept. The slope of
the Vptp versus Vb line is termed GD for gradient and can be
used to maintain a constant tip-to-specimen distance since GD
is inversely proportional to d0 squared:

GDα
1

d2
0

. (3.21)
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FIG. 4. (Color online) Vptp versus Vb plot showing its relationship
to �Vs and �d0. A change in specimen surface potential, Vs , shifts
the result horizontally along the Vb axis, as seen between lines A and
B. Changing the tip-to-specimen distance changes the slope as seen
between lines A and C.

Given these relationships, an off-null method can be used
to determine Vs by using two Vb levels in the linear regime:
Vb � Vs and Vb � Vs, as described by Baikie et al. [1]. A
linear projection between the two points can help extrapolate
the x intercept and thus derive Vs . This off-null approach
minimizes the noise frequently associated with self-nulling
systems where external and internal noises can significantly
confound the determination of the zero current point. The
off-null approach may also be used to calculate GD and can be
incorporated into a “tracking” software algorithm to maintain
a constant tip-to-specimen distance [1]. With tracking enabled,
adjustments of the tip-to-specimen distance are made by the
system’s stepper motors prior to making a Vs measurement.
This can be particularly helpful when scanning across an
uneven surface or testing a moving specimen. Holding the
tip-to-specimen distance constant assures minimal variation
in d0 and thus Ck .

2. Conductive dielectric with rapid relaxation

Biomaterials typically have free and bound charges. For this
reason, materials with nonzero conductivity and permittivity
values are considered here. While the mechanism of charge
relaxation within a dielectric is very different than that in a
metal its effect on the transient term in Eq. (3.8) is similar.
For this rapid relaxation case we once again assume that any
charge relaxation occurs at a time scale much shorter than
the Kelvin probe oscillation period. This yields the condition
τ � t1. Therefore the electrical field at the probe tip can be
simplified to (3.15). It then follows that the solutions for Ck ,
Vr , Vss , and Vptp for this case are the same as in the highly
conductive material case, shown in Eqs. (3.16), (3.18), (3.19),
and (3.20), respectively.

Despite the presence of a polarizable molecular substrate,
the high conductivity of the substrate and the associated short
charge relaxation time results in close to zero electric field in
Region 2. Thus, polarization effects in Region 2 are negligible,
accounting for a rapid response to changes in the external
electrical field similar to that of highly conductive materials
such as metal. Conductivity is a general term referring to any
type of mobile charge and thus may refer to ionic conductivity

as well as electrical conductivity. Importantly, as noted in the
formula for the time constant, Eq. (3.9), d0 and d2 also play a
contributory role and should be factored in when determining
whether a dielectric is categorized as having “rapid relaxation.”

3. Conductive dielectric with slow relaxation

Next, we consider a conductive dielectric with slow
relaxation, τ � t1. In this case, the material response to
the electrical field is much slower than the rate at which
the electrical field is changed due to the Kelvin probe tip
oscillations. Consequently, the transient term for E1(t) in
Eq. (3.8) is no longer negligible and must be incorporated
into the Vr (t) calculations. Substituting E1(t) into Eq. (3.16),
the composite capacitance is shown here:

Ck = ε1A

{
1

d1 (t)
+

[
ε2

ε2d1(t) + ε1d2
− 1

d1(t)

]
e−t/τ

}
.

(3.22)

To solve for Vr (t), Ck is substituted into Eq. (3.14). It
is assumed that d0 � da and since τ � t1, the exponential
term exp(−t/τ ) is assumed to be constant during the actual
symbolic solution of the differential equation. From the
perspective of the specimen, this assumption suggests that
no meaningful response in charge relaxation is observed
within the span of the Kelvin probe measurement period. The
complete symbolic solution for Vr (t) is

Vr (t) = − ε1ARin (VN1 + VN2 + VN3 + VN4)(
d2

0τ
)

(ε2d0 + ε1d2)2
(
1 + ω2R2

inC
2
p

) (Vb + Vs) ,

(3.23)

where

VN1 = e−t/RinCpe−t/τ
[(−ε1ε2d2d

2
0 − ε2

1d
2
2d0

)(
1 + ω2R2

inC
2
p

)
+ (

daω
2τRinCp

)(−2ε2ε1d0d2 − ε2
1d

2
2

)]
,

VN2 = e−t/RinCp [daω
2τRinCp(ε2d0 + ε1d2)2],

VN3 = e−t/τ
{(

ε1ε2d2d
2
0 + ε2

1d
2
2d0

)(
1 + ω2R2

inC
2
p

)
+ (daτω)

(
ε2

1d
2
2 + 2ε1ε2d0d2

)
[ωRinCp cos(ωt)

− sin(ωt)]
}
,

VN4 = (daωτ )(ε2d0 + ε1d2)2[sin(ωt) − ωRinCp cos(ωt)].

Taking exp(−t/τ ) to be equal to 1 and simplifying, it can
be shown that the steady state solution is

Vss = KS(Vb + Vs) sin(ωt + θ ) + Vdc, (3.24)

where

KS = ωε1ε
2
2daA

(ε2d0 + ε1d2)2 Cp

√
1

R2
inC

2
p

+ ω2
.

θ is the same as in Eq. (3.18) and Vdc is a dc voltage associated
with the solution. Table I provides the equation for Vdc.
Generally, Vdc is small relative to the oscillatory component
and does not affect the Vptp measure of the Kelvin probe which
is given by

Vptp = 2KS(Vb + Vs). (3.25)
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TABLE I. Theoretical equation summary.

Parameter Highly conductive Rapid relaxation Slow relaxation Perfect dielectric Resistive bulk

Dc offset (Vr ) 0 0 SNZ1 0 0

Phase (Vr ) tan−1(−RinCpω) tan−1(−RinCpω) tan−1(−RinCpω) tan−1(−RinCpω) SN1

Vptp (3.20) (3.20) (3.25) (3.32) (3.40)

GD 2ωε1daA

d2
0 Cp

√
1

R2
inC2

p
+ω2

2ωε1daA

d2
0 Cp

√
1

R2
inC2

p
+ω2

2ωε1ε2
2daA

(ε2d0+ε1d2)2Cp

√
1

R2
inC2

p
+ω2

2ωε1ε2
2daA

(ε2d0+ε1d2)2Cp

√
1

R2
inC2

p
+ω2

SN2

GD versus d0 ∼ 1
d2

0
∼ 1

d2
0

∼ 1
d2

0 +d0
∼ 1

d2
0 +d0

∼ 1
d2

0 +d0

Designator Equation

SNZ1
ε1ARin(ε2

1d2
2 d0+ε1ε2d2

0 d2+ε2
1d2

2 d0ω2R2
inC2

p+ε1ε2d2
0 d2ω2R2

inC2
p)

(d2
0 τ )(ε2d0+ε1d2)2(1+ω2R2

inC2
p )

(Vb + Vs)

SN1 tan−1
(

Rind2ε1Cpω+Rind0ε2Cpω

RinRbε1ε2ACpω2−d2ε1−d0ε2

)

SN2
2Rinε2

2ε1daAω

(d0ε2+d2ε1)
√

(RinRbε1ε2ACpω2−d2ε1−d0ε2)2+(RinCpω)(d2ε1+d0ε2)2

The specimen permittivity ε2 and the effective penetration
depth, d2, are influential in KS. The relationship between GD
and d0 is more complicated than that of the highly conductive
and rapid relaxation cases. A change in d0 will now cause the
slope to change with

GDα
1

d2
0 + d0

, (3.26)

as opposed to the 1/d2
0 relationship in a metal. For cases where

ε2d0 � ε1d2 the behavior will be similar to that in a highly
conductive material since the slope will be proportional to
1/d2

0 .
Also for this case where ε2d0 � ε1d2, (ε2d0 + ε1d2)2 will

be dominated by ε2
2d

2
0 . Due to the ε2

2 term in the numerator of
KS , these will cancel, implying that the permittivity of Region
2 does not significantly affect the result in this scenario.

The solution in Eq. (3.23) highlights the importance of the
relative relationship between the Kelvin probe capture point
and the relaxation time. The off-null approach requires Vb to
be switched between two values. If Vb is held constant for
a prolonged period of time prior to switching, Eq. (3.23) is
reduced to just the VN 4 term as t → ∞, and the specimen
functions similarly to a highly conductive material. On the
other hand, immediate switching relative to relaxation time,
as it is assumed here (t < 100∗τ ), would generate a much
different response.

4. Perfect dielectric

Unlike highly conductive materials and conductive di-
electrics which have free charges available to neutralize exter-
nal electrical fields, perfect dielectrics (i.e., perfect insulators)
theoretically have no free charges [18]. The response to an
electrical field in a perfect dielectric is confined to the rotation
of bound charges within the specimen. The charges are not
free to migrate to the superficial layers of the specimen. The
localized reorientation of these charges serves to counter the
external electrical field. A perfect dielectric being tested by

a Kelvin probe is represented in Fig. 2(b) with specimen
conductivity approaching zero. The depth of the capacitor
would not vary significantly with time due to the absence
of mobile charges. By allowing the specimen conductivity
to approach zero, the relaxation time, τ , will be large and
the exponent in (3.8), exp(−t/τ ), approximates to 1. This
eliminates the Vc/d1(t) terms and yields the following E1(t)
relationship:

E1(t) = Vcε2

ε2d1(t) + ε1d2
. (3.27)

Combining this with Eq. (3.16) we observe that the
capacitance in this case is simply represented by two ideal
capacitors below the tip:

Ck =
[
d1 (t)

ε1A
+ d2

ε2A

]−1

. (3.28)

Taking the derivative of Ck with respect to time yields

dCk

dt
= daωsin(ωt)

ε1A
[

d1(t)
ε1A

+ d2
ε2A

]2 . (3.29)

Solving Eq. (3.14) for this condition yields

Vr (t) = − ωb

a2 + ω2
e−at + b√

a2 + ω2
sin (ωt + θ ) , (3.30)

where

a = 1

RinCp
, b = V0ωdaAε1ε

2
2

Cp(ε2d0 + ε1d2)2
, θ = tan−1

(
−ω

a

)
.

The steady state solution is then

Vss (t) = KP (Vb + Vs) sin (ωt + θ ) , (3.31)

where

KP = ωε1ε
2
2daA

(ε2d0 + ε1d2)2 Cp

√
1

R2
inC

2
p

+ ω2
.
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This results in a peak-to-peak voltage of

Vptp = 2KP (Vb + Vs). (3.32)

This solution is identical to Eq. (3.25) for a conductive
dielectric with slow relaxation, which follows from taking the
exponent in (3.8) equal to 1.

C. Resistive bulk formulation

A material which exhibits resistance between the effective
penetration depth within the specimen to the reference elec-
trode is considered here. The circuit diagram for this case is
shown in Fig. 3.

Applying conservation of potential to this circuit, the
potential drop across Rb is noted to be

VRb = ItotRb = dq

dt
Rb. (3.33)

The potential drops across the circuit elements are, there-
fore,

VRb + VCk + V0 + Vr = dq

dt
Rb + q

Ck

+ V0 + Vr = 0.

(3.34)

Rearranging this equation gives

dq

dt
RbCk + q = −Ck (V0 + Vr ) . (3.35)

Taking the derivative of this equation with respect to time
yields

d2q

dt2
RbCk + dq

dt

dCk

dt
Rb + dq

dt

= −Ck

dVr

dt
− dCk

dt
(V0 + Vr ) . (3.36)

Taking the derivative of Eq. (3.10) with respect to time
yields

d2q

dt2
= Cp

d2Vr

dt2
+ 1

Rin

dVr

dt
. (3.37)

We get the following differential equation for Vr by
combining the above equations:

d2Vr

dt2
+ dVr

dt

1

RbCk

+ Vr

1

RbRinCpCk

= −dCk

dt

1

RbCpCk

(V0 + Vr ) , (3.38)

assuming Cp � Ck, Cp � CkRb

Rin
,

1

Rin
� dCk

dt
,

Cp � RbCp

dCk

dt
, and

1

Rin
� Rb

Rin

dCk

dt
.

For the complete solution of Vr (t) see Appendix A [Eq. (A1)].
The steady state solution is

Vss = 2KB (Vb + Vs) sin (ωt + θ ) , (3.39)

where

KB = Rinε
2
2ε1daAω

(d0ε2 + d2ε1)
√

(q2 + v2)
,

q = RinRbε1ε2ACpω2 − d2ε1 − d0ε2,

v = Rind2ε1Cpω + Rind0ε2Cpω,

θ = tan−1

(
v

q

)
.

The peak-to-peak voltage is then given by

Vptp = 2KB (Vb + Vs) . (3.40)

The solution is complicated and filled with multiple terms.
In highly conductive materials such as metal, the resistance
is negligible between the effective penetration depth to the
reference electrode. This may not necessarily be true for all
materials and could potentially lead to misinterpretation of the
actual Kelvin probe measurement.

D. Equation summary

Table I summarizes the mathematical derivations of relevant
Kelvin probe variables for all of the theoretical material cases.
The listed parameters include the dc offset of Vr , the phase
angle between Vr and the tip oscillation, the value for GD, and
the proportional relationship between GD and d0.

IV. NUMERICAL CALCULATIONS AND DISCUSSION

A. Setup parameters

Using the formulas derived in the previous section, a
computational approach was taken to acquire results typically
provided by the Kelvin probe device. Table II outlines the
general parameters used for these calculations. Generally, the
Kelvin probe tip is placed as close as possible to the specimen
to maximize the signal voltage and minimize external noise
effects. As indicated in Table II, this distance, d0, will be
assumed to be 1 mm. The standard maximum Vs capture rate is
approximately 20 Hz and includes two Vptp captures at differ-
ent Vb levels. Although options for reducing the Vs capture rate
are available (e.g., adding digital-to-analog-converter delays or
averaging across multiple Vptp at a given Vb), they will not be
considered here. The I -V converter feedback resistor, Rf , and

TABLE II. General parameters.

Description Designator Value

Mean tip-to-specimen distance d0 1 mm
Tip diameter — 2 mm
Tip oscillation amplitude da 70 μm
Tip oscillation frequency ω (2π )(100) rad/s
Tip backing potential Vb 7 V
Specimen surface potential Vs 0.5 V
Surface potential capture rate — 20 Hz
I -V input resistance Rin 20 �

I -V input capacitance Cp 100 pF
I -V feedback resistance Rf 1 × 107 �

Preamplifier gain G –1 × 103
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TABLE III. Case parameters.

A. Theoretical cases εr 2 d2 (m) τ (s) Rb (�)

Metal (highly conductive) — — 0 0
Rapid relaxation — — 0 0
Slow relaxation A 1000 1 (100)(t1) 0
Slow relaxation B 100 000 1 (100)(t1) 0
Perfect dielectric 1 1 — 0
Resistive bulk 1 1 — 100

B. Biological cases εr 2 σ (S/m) Calculated d2 (m) Assumed d2 (m) τ (s)
Cerebrospinal fluid 109 2 35.6 1 4.9 × 10−9

Tendon 11 857 000 0.305 101 1 3.4 × 10−4

Wet skin 45298 0.000461 3048 1 8.9 × 10−4

Dry skin 1135 0.0002 3614 1 9.5 × 10−5

gain, G, of the preamplifier stage in the Kelvin probe serve to
amplify the signal [1]. They are not shown in Figs. 1 or 3, the
simplified versions of the Kelvin probe circuits.

Table III A and III B outline the parameters used for the
individual theoretical and biological cases. The theoretical
parameter values were chosen to highlight the contrasting con-
ditions and cases discussed in the prior section. For example,
for the conductive dielectric material with slow relaxation,
τ is taken to be 100 times t1. This creates the extreme
condition where the relaxation is slow and allows for the
transient exponential term in Eq. (3.22) to be treated as unity.
The biological parameter values were taken from published
literature [19,20]. The relaxation times were calculated using
the formula for τ , as detailed in Eq. (3.9). The depth of the
specimen capacitor, d2, was calculated based on the formula
for skin-penetration depth in a lossy conductor:

δ = 1

ω

√
(

με2

2

{√[
1 + (

σ
ωε2

)2] − 1
}) , (4.1)

where μ is the permeability of the material and σ the conduc-
tivity. Because biological materials are generally nonmagnetic,
the permeability can be taken as μ0, the permeability of
free space. As seen in the Table III B, the calculated skin
depth is greater than 1 m for all of the biological materials
considered. Unless otherwise noted, d2 is taken to be 1 m.
Although the distance between the Kelvin probe tip and the
reference electrode is unlikely to be greater than 1 m in
most biological specimens, a larger d2 would highlight the
contrasting behaviors of the various biomaterials. The effects
of varying d2 will be discussed further.

B. Theoretical cases

Figures 5(a) and 5(b) provide plots of Vss for the formula-
tions outlined in Sec. III. Unless otherwise noted the highly
conductive material will be taken to be a metal. As seen in
Fig. 5(a), the Vss solutions for the metal, rapid relaxation and
slow relaxation B cases are nearly identical. Closer inspection
of the actual numerical data reveals that the slow relaxation
B case is associated with minor reductions in peak-to-peak
Vss amplitudes. As described in Sec. III B 2, the steady state
solution for the rapid relaxation condition reduces to the

metal solution, explaining why the two results are identical.
In contrast, the slow relaxation A case yields a substantially
smaller Vr amplitude, which can be traced to the following
coefficient in the Vss equation (3.24):

ε1ε
2
2

(ε2d0 + ε1d2)2 . (4.2)

Because slow relaxation B has a substantially larger ε2,

the relationship ε2d0 � ε1d2 holds true and the ε2
2 terms

in the numerator and denominator are canceled. Under this
condition, the specimen permittivity has little to no effect
on the Kelvin probe measurements, and the measures are
nearly identical to that of metal. On the other hand, for
slow relaxation A, the relationship ε2d0 = ε1d2 is true and
contributes to a fourfold reduction in Vss amplitude. In this
regime, changes in ε2 will affect Vss and generally contribute
to smaller Vss amplitudes. Importantly, although an increased
ε2 will generally augment Vss amplitudes, this rule remains
valid only once steady state is reached and charge relaxation is
effectively complete. The increased ε2 has the additional effect
of substantially increasing the relaxation rate in Eq. (3.9) and
thereby effectively reducing the voltage amplitudes in the early
stages of relaxation as shown in Eq. (3.23).

In the resistive bulk example, a perfect dielectric specimen
is used as its basic component. As shown in Fig. 5(b) the
Kelvin probe voltage amplitude observed in a perfect dielectric
specimen, with or without a resistive bulk, is substantially
decreased when compared to the amplitudes observed for the
cases depicted in Fig. 5(a). By having the dielectric specimen
possess a dielectric constant equivalent to that of air (ε1 = ε2)
and having d2 = 1 m, this hypothetical example presents a
situation where the Kelvin probe is effectively measuring
a sample nearly 1 m away. Conceptually this makes sense
because the dominant term in the denominator of Eq. (4.2) is
ε2

1d
2
2 in a perfect dielectric specimen. This is not necessarily

the situation in the other cases analyzed here. Because the
amplitude of Vr is proportional to ε1/d

2
0 in a metal and

ε2
2/(ε1d

2
2 ) in a pure dielectric, the Vr amplitude is six orders of

magnitude smaller in the pure dielectric case with the values
used here. With a significantly larger ε2 or smaller d2, this
observed attenuation in amplitude will not be seen. Of note,
the added resistance to the bulk has essentially no effect on
the Vr amplitudes as demonstrated in Fig. 5(b). This lack of
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FIG. 5. (Color online) (a) Vss solution for theoretical cases: metal, conductive dielectric with rapid relaxation, conductive dielectric with
slow relaxation: A: ε2 = (1000)(ε0) and B: ε2 = (100 000)(ε0). (b) Vss solution for theoretical cases: perfect dielectric and resistive bulk.

difference can be attributed to the remarkably low amounts
of currents utilized in the Kelvin probe system. For the metal
case, for example, the current magnitude is approximately
1 × 10−11 A, whereas the amplitude for the perfect dielectric
case is as low as 1 × 10−17 A.

These sinusoidal Vr graphs in Fig. 5 reveal no evident
phase shift. As listed in Table I, the calculated phase shift
between the tip-oscillation and Vr for all cases, except for the
bulk resistive condition, is given by the relationship

θ = tan−1(−RinCpω). (4.3)

Accordingly, to obtain a phase shift as small as 1◦, the
following condition must hold: RinCp > 2E − 3. However,
the input resistance for the Kelvin probe I -V converter is small:
∼20 �, and the parasitic capacitance is similarly minute:
100 pF, making any phase shift unlikely in these cases. Even
with the bulk resistive example, the phase shift is on the order
of 10−6 radians across a large range of bulk resistance values.
One situation where phase shifts may become visibly evident
is when there is an actual temporal lag in the specimen’s
charge relaxation with respect to the tip (and thus electrical
field) oscillations. Although this particular condition was not
evaluated in this study [we assumed either rapid (τ � t1) or
slow (τ � t1) relaxations], these results assure future Kelvin

probe users that any meaningful phase shifts are attributed to
actual temporal processes within the specimen’s surface and
not to the circuit or to the resistive components within the bulk.

Figure 6 shows the Vptp versus Vb plots for the six hypo-
thetical cases. As demonstrated in Fig. 6(a), the metal, rapid
relaxation, and slow relaxation B conditions have identical
linear relationships, whereas slow relaxation A is associated
with a reduced slope. Despite the identical tip-to-specimen
distances across the four cases, the slopes differ and indicate
that GD—as measured by the Kelvin probe—will not be an
accurate marker of tip-to-specimen distance. Similarly, the
perfect dielectric and resistive bulk conditions are associated
with a much reduced GD as seen in Fig. 6(b) (the y axis is
rescaled by six orders of magnitude for presentation purposes).
As explained previously, these differences are attributed to
the dielectric coefficient Eq. (4.2) and imply that GD can be
greatly influenced by ε2 and d2. For future studies of dielectric
materials, these factors should be considered if GD is to be
employed as a marker of tip-to-specimen distance.

However, if GD is indeed a function of ε2 and d2 then
theoretically GD may be utilized to provide further insights
into these properties. To further extract this information, the
tip-to-specimen distance (d0) may be adjusted at predefined
step intervals as the GD is recorded, and the data subsequently

FIG. 6. (Color online) (a) Vptp versus Vb plot for theoretical cases: metal, conductive dielectric with rapid relaxation, conductive dielectric
with slow relaxation: A: ε2 = (1000)(ε0) and B: ε2 = (100 000)(ε0). (b) Vptp versus Vb plot for theoretical cases: perfect dielectric and resistive
bulk.
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FIG. 7. (Color online) (a) 1/GD versus d2
0 plot for theoretical cases: metal, conductive dielectric with rapid relaxation, conductive dielectric

with slow relaxation: A: ε2 = (1000)(ε0) and B: ε2 = (100 000)(ε0). (b) 1/GD versus d2
0 plot for theoretical cases: perfect dielectric and

resistive bulk.

utilized to produce a 1/GD versus d2
0 plot. This graph is helpful

because 1/GD is proportional to the coefficient

(ε2d0 + ε1d2)2

ε1ε
2
2

. (4.4)

It would be directly related to d2
0 if d2 were negligible or

if ε2 were substantially elevated. Figure 7 reveals that metal,
rapid relaxation, and slow relaxation B are all associated with a
linear plot, even as the tip approaches the specimen’s surface.
Importantly, this linearity arises from different reasons: for
metal and rapid relaxation, it arises from a negligible d2, while
for slow relaxation B, it is derived from a remarkably elevated
ε2. On the other hand, slow relaxation a generates a nonlinear
plot, particularly close to the surface, and, likewise, the perfect
dielectric and resistive bulk yield a nonlinear plot as demon-
strated in Fig. 7(b). These curvatures arise from the fact that
ε2d0 is within the same scale as ε1d2. Again noted in Fig. 7(b)
is the negligible effect of bulk resistance on these plots.

The 1/GD versus d2
0 plot can theoretically be analyzed to

derive ε2 and d2. As illustrated in Fig. 7(b), the y intercept
is a nonzero value that is proportional to d2

2/ε2
2, whereas the

nonlinear plot is a function of the coefficient in Eq. (4.4).
These two aspects of the plot can be evaluated to provide an
estimate of ε2 and d2, assuming a known ε1 and d0. Moreover,

the charge relaxation rate—which is also a function of these pa-
rameters and can be assessed as Vr is measured over time—can
add additional corroborative information about these important
properties of the specimen. The challenge, however, is to
obtain an accurate GD when d0 is zero considering that the tip
is vibrating and that the d0 � da assumption is no longer valid.

To assess the effects of d2, Fig. 8 shows the 1/GD versus d2
0

plots across a range of d2 for both slow relaxation A and slow
relaxation B conditions. As d2 becomes smaller in magnitude,
the plot is increasingly linear as shown in Fig. 8(a). Figure 8(b)
provides a log-log plot of the data and reveals that, within a
given case (A or B), increasing d2 by one order of magnitude
proportionally increases the y intercept value by two orders of
magnitude. This is attributed to the ε2

1d
2
2 term in the coefficient.

Similarly, for a given d2, the y intercept affiliated with case A
is four orders greater than case B and traced to the two orders
greater magnitude ε2. As expected, the slow relaxation A line
with d2 equal to 1 cm identically matches the slow relaxation
B line with d2 equal to 1 m, indicated by the triangle marker
inside the circle marker.

C. Biomaterial cases

The biological examples in Table III B outline a variety
of human biomaterials with distinct electrical properties. To

FIG. 8. (Color online) (a) 1/GD versus d0
2 plot for conductive dielectric with slow relaxation: A: ε2 = (1000)(ε0) and B: ε2 = (100 000)(ε0).

For each case, A and B, three different values for d2 are plotted: d2 = 1 m, d2 = 10 cm, and d2 = 1 cm. (b) Log-log plot of 1/GD versus d2
0 for

the data shown in part (a) of this figure.
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FIG. 9. (Color online) (a) Vss solution for biomaterial cases: wet skin, dry skin, cerebrospinal fluid (CSF), and tendon. (b) Plot of the large,
fast transient for the dry skin solution from part (a) of this figure.

analyze how these properties affect the Kelvin probe mea-
surement, the complete solution for a conductive dielectric is
used without making any assumptions regarding the relaxation
rate constants when compared to the tip oscillation periods.
The relaxation time for each material was calculated using
Eq. (3.9), and, as seen in Table III B, the times are all
less than 1 ms. Relaxation time is generally proportional to
permittivity and inversely proportional to conductivity. The
field penetration depths were also calculated using Eq. (4.1)
and listed in Table III B. Due to the uniformly large values, a
more realistic value of 1 m was used for all specimens.

Figure 9(a) displays the Vr amplitudes with respect to time
for all four biomaterial cases. Wet and dry skin possesses a
transient Vr component which quickly settles by the time the
first wave-form peak is realized. This rapid settling ensures
that the transient term has little to no effect on the peak-to-
peak calculations performed by the Kelvin probe system. In
Fig. 9(b), the y axis is rescaled to reveal the large, yet short-
lasting transient associated with dry skin. As seen in Eq. (3.8),
the transient term is proportional to the rearranged coefficient,(

ε1d2

ε2d
2
1 + ε1d2d1

)
e−t/τ . (4.5)

When ε2d
2
1 > ε1d2d1 as it is in wet and dry skin, the magnitude

of the transient term will be proportional to 1/ε2. Because
dry skin has a comparatively smaller ε2 relative to wet skin
and tendon, the peak magnitude of its transient term is the
largest of the three. The settling times for wet skin and tendon,
however, are larger and attributed to the larger permittivity.
The tendon’s transient effect is not seen in Fig. 9 due its small
amplitude. Although cerebrospinal fluid is associated with the
smallest permittivity, the ε1d2d1 term is no longer negligible
and therefore yields an effectively smaller transient magnitude.
These transient effects will be relevant if the capturing rate
were increased or if the specimen possessed larger charge
relaxation times.

For the cases considered here based on the complete
solution for a conductive dielectric it is important to note
that there is a dc offset term. However, this term is generally
insignificant, being at least 40 orders of magnitude smaller
than the oscillatory component of Vr .

Figure 10 provides plots of Vptp versus Vb for the selected
biomaterials, and it is evident that the four plots are identical.

Given the small relaxation times for all cases relative to
the maximum Vs capture rate of the Kelvin probe system
(∼20 Hz), all four biomaterials are classified as rapid relax-
ation specimens and therefore act similarly to highly conduc-
tive materials such as metals. This conclusion is corroborated
by our preliminary data of Kelvin probe measurements on
human skin where, surprisingly, the Vr amplitudes were equal
to those of metal. Accordingly, due to the similarity to metals,
the GD measurement may also be used to accurately gauge the
tip-to-specimen distance in these biomaterials.

D. Limitations

This analysis has a number of limitations. First, sym-
bolic solutions were not obtained for the case where the
tip oscillation period was within the temporal scale of the
specimen relaxation time. The formulaic derivations obtained
from the MAPLE symbolic software were too complex to
be analyzed and incorporated within this study. Second, the
Kelvin probe off-null method relies on alternating Vb (backing
potential) to calculate the surface potential. These regular
changes in electrical field may contribute an additional rate
constant to the equations which were not fully considered
within the analyses. This effect, however, is negligible if

FIG. 10. (Color online) Vptp versus Vb plot for biomaterial cases:
wet skin, dry skin, cerebrospinal fluid (CSF), and tendon.
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the specimen’s charge relaxation is either much faster or
much slower than the rate at which the Vb is changed. This
further justifies our approach of solely focusing on the fast
and slow relaxation cases. Third, we assumed a constant
permittivity for all theoretical and biomaterial cases, despite
the fact that permittivity, ε2, can be complex and frequency
dependent. We partially mitigated this factor by purposefully
utilizing published values for permittivity and conductivity
at 100 Hz. Performing our analysis in the frequency domain
would have more readily incorporated complex permittivity
and conductivity characteristics. We choose to keep our
analysis in the time domain instead to emphasize the dynamic
between the probe oscillation period and specimen settling
time. Fourth, biomaterials are typically complex and composed
of multiple molecular and macromolecular structures with
variable permittivity and conductivity values. We simply
focused on a single set of permittivity and conductivity values
at a time. Fifth, these calculations are theoretical, and acquiring
real-world measurements of small currents can be challenging.
Obtaining accurate Kelvin probe measures may be particularly
difficult in perfect dielectrics. Sixth, some biological specimen
may exhibit significant surface currents in response to external
low-frequency electrical fields [21]. These surface effects were
not considered in our analyses. Finally, the effects of diffusion
and its influence on charge relaxation and on formation of
double layers were not factored in the analyses, although such
processes are possible candidates for future studies.

V. CONCLUSION

For nonconductive and partially conductive materials con-
sidered in this analysis, the Kelvin probe performs in two

distinct manners. If the charge relaxation in the material
occurs faster than the rate of electrical field oscillations
(associated with tip movement), then the Kelvin probe gen-
erates surface potential measurements and Vr amplitudes
equivalent to that of highly conductive materials such as
metal, and the off-null approach yields an accurate tracking
measurement of the tip-to-specimen distance. If, however,
the charge relaxation is much slower or occurs not at all,
the Kelvin probe generates smaller Vr amplitudes and the
tracking function is less accurate. Nevertheless, analyses of
various Kelvin probe-generated variables may help derive
the specimen’s permittivity and electrical field penetration
depth. The resistive components within the specimen’s bulk
contribute little to the overall Kelvin probe surface potential
measurements.

Because of their rapid relaxation rate and increased
permittivity, biomaterials behave similarly to metal when
evaluated by the Kelvin probe. As a consequence, the
Kelvin probe can be readily applied to measure surface
potentials of biological specimens and theoretically obtain
measurements with submillivolt resolution at a micrometer
spatial scale without being confounded by factors attributed to
electrode-specimen contact. This may have important future
medical applications for evaluating electrical fields associated
with wound healing, dermatological malignancies, and sweat
activity.
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APPENDIX A

The Vr (t) solution for a perfect dielectric with a resistive bulk is provided here.

Vr (t) = VD1 + VD2 + VD3, (A1)

where

VD1 = (C1)e−(Mx )(Tx+Ty )t , VD2 = (C2)e−(Mx )(Tx−Ty)t , VD3 = VDN

VDD

, Mx = 1

2ε1ε2RinRbCpA
, Tx = RinCp (ε2d0 + ε1d2) ,

Ty =
√

R2
inC

2
p (ε2d0 + ε1d2)2 + (−4ε1ε2RinRbCpA) (ε2d0 + ε1d2),

VDN = Rinε1ε
2
2daAω[(ε1d2 + ε2d0)(ωRinCp cos(ωt) − sin(ωt)) − ε1ε2RinRbCpω2A sin (ωt)](Vb + Vs),

VDD = (ε2d0 + ε1d2)
[
(−2ε1ε2RinRbCpAω2)(ε2d0 + ε1d2) + (ε2d0 + ε1d2)2 + (

R2
inC

2
pω2

)
(ε2d0 + ε1d2)2 + ε2

1ε
2
2R

2
inR

2
bC

2
P A2ω2

]
.
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